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Hamiltonian nontwist map for magnetic field lines with locally reversed shear
in toroidal geometry
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A simple Hamiltonian map is constructed, fulfilling the minimum requirements for the representation of a
tokamak magnetic field in reversed shear configuration. This “revtokamap” is a typical nontwist map, for
which many theorems of “traditional” dynamical systems theory do not apply. It is shown that in the rev-
tokamap, for finite stochasticity parameter, a critical surface appears, separating an external, globally stochastic
region from a robust nonstochastic core region. This phenomenon of “semiglobal chaos” is analogous to the
well-known appearance of an internal transport barrier in reversed shear tokamak experiments. An analysis of
the fixed points reveals a variety of bifurcation and reconnection phenomena, which appear to be generic for
nontwist maps with an impenetrable polar ax81063-651X98)09809-2

PACS numbgs): 52.25.Fi, 05.45+h, 52.25.Gj
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In a previous work{1] we constructed an iterative map, )
called atokamap representing a model of the magnetic field
lines in a toroidally confined plasma, such as in a tokamak HereK is a real number called thstochasticity param-
configuration. Such a map generates phase portraits of poster, its range of physical interest isOK<2. W(#) is the
sibly chaotic orbits in a much simpler way than the directunperturbedwinding number{or the inverse safety factor,
integration of the field line differential equations. It is well 1/4(#)]: its role will be thoroughly discussed below. Rela-
known that the latter have a Hamiltonian form in which thetion (1) is made explicit by solving for,,; and keeping
toroidal flux coordinatey (divided byB,a?) and the poloidal ~ ©nly the positive root:
angle coordinate (divided by 27) play respective roles of 1 5
canonically conjugate momentum and position variables, the o= 5P, 0,) +[P(8,.0,) 1%+ 4.}, 3
toroidal angle (divided by 2m) plays the role of time, and
the poloidal flux a(y,6,0) (scaled byBya?) is the Hamil-
tonian. (Here B, is a characteristic magnetic field intensity, K
and a is the minor radius of the toruslt is, in general, P(¢g,0)=¢—1— e sin 2 6. (4)
impossible to construct a map thatagactly equivalento a 7’
given Hamiltonian system without solving the equations of
motion (which is precisely what one wants to avpi®©ne
wishes to construct, instead, a modél initio, and check its
relevancea posteriori A map representing a global picture
of a tokamak cross section perpendicular to the magneti
axis should satisfy at least two important constraints:

(i) The map should be Hamiltonigor symplecti¢, hence
area preserving. This implieg2,3] that the coordinates
(4,41.0,,1) at “time” v+1 be related to the coordinates
(¢,,0,) at “time” v by a canonical transformatiofinere v
is an integer.

(ii) The map must beompatible with toroidal geometry
This implies that the radial coordinatebe a definite posi-
tive number. In particular, if at time zerg,>0, then at all
later timeswv, ,>0; and if =0, theny,=0 for all v.
Thus the polar axis must be an impenetrable barrier.

It was shown in Ref[1] that the following map satisfies
the constraints

where the functiorP (¢, 0) is defined as

The map defined by Eq&l)—(4) is called the Tokamap. It
was shown that it reproduces qualitatively many global fea-
tures of the magnetic configurations found in tokamak ex-
geriments.

The winding number profil&V() determines the prop-
erties of the phase portrait in an essential way. In Refa
class of Tokamaps was studied, corresponding to “classical”
experiments in whichV(y) is a monotonously decreasing
function of ¢ [henceq(#) is a monotonously increasing
function]. In “tokamak terminology,” this is expressed by
saying that theshear s=[4/q(¥)]dq()/dy is definite
positive over the whole range of the radial coordinate. In
“dynamical systems language,” this means that these toka-
maps argwist maps

In recent years an important amount of work, both experi-
mental and theoretical, has been devoted to tokamak situa-
tions with a locally reversed sheésee, e.g., Refd4-12|
and further references therginin these experiments, the
safety factor profile has a local minimum; hence Weéy)
function is no longer a monotonously decreasing function,
b=, — _ﬂ sin 270, (1) but rather possesses a maximum. The main importance of
2w 1+4,4q suchreversed shear configuratiorier controlled fusion re-
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sults from the formation of amternal transport barrier(ap- 0.8 |

parently first mentioned in Ref4]). The radial transport in

the central region is thus significantly reduced, the core be-

ing efficiently insulated from the outside. As a result, the

temperature and density profiles have a very flat section in

the core, followed by an abrupt drop near the edtgs

feature is particularly visible in the experiments described in

Refs.[11,12). Because of these favorable phenomena, the 0 T,
N . 0 02 04 06 08 1

reversed shear appears as an essential ingredient of the so-

called “advanced tokamak scenariog'13]). Theoretical v

work has been concentrated on mechanisms of stabilization FiG, 1. Unperturbed revtokamap winding number profile

of some instabilities by the effect of she@rapped particle g, (y).

modes,EX B velocity shear effects, efc.It will be shown

here that the tokamap reproduces the formation of a magsompared to the standard nontwist map. As far as we can see

netic field configuration that strikingly suggests the presencet present, this precludes, for instance, the use of such el-

of a transport barrier. Thécautious interpretation of this egant methods as the renormalization group for the study of

fact will be discussed below. the transition to chaos.
The implementation of a reversed shear profile into the
tokamap is very easy: one simply chooses\\() an ap- Il. GLOBAL PROPERTIES OF THE REVTOKAMAP

propriate function which has a maximum at some valué of
between 0 and 1. The resulting map then becomes a typical There is considerable freedom in the choice of the pro-
nontwist map. Such maps have not been very extensivew'es. In order to StUdy the structure of the revtokamap we
studied in the past: in particular, most textbooks on dynamiconsider a simple class &¥ profiles of the following form:

cal systems do not mention them, because some of the 5

“great” theorems(such as the Kolmogorov-Arnold-Moser Wr(¥)=w[1-a(cy—1)7]. @
theoren) are not V‘T"“d for fthem. A very clear early study of This function depends on three parameters. In order to
Fiz]]plsarﬂgsz ;’; tre"cstsfycg‘enlosniwi:‘s\tlvr%rg ts)ywl_ez'?gvgtrgdsi:;?n '_Igflémprove the physical insight, we express the latter in terms
[15;1ﬂ The m%st extensive existir?g studies of nontwistOf the following quantitiesw, 'the maximum value oW
maps are found in a series of papers by deI—CastiIIo—Negret\évol’ thef\\//slue OENR %n the a_x\liilzwg: W\;*V(O)]h; andt\)/vl_, the
and co-worker§18—21. In these works the paradigm called "2 1€ OTV/R atthe edg¢w, =Wg(1)]. We then obtain
the standard nontwist majs analyzed in great detail. Be- wW—Ww,

cause of its apparent simplicity, this map plays the same role a= , c=1+
as the Chirikov-Taylor standard map for twist maps. It is w
defined as follows:

W—W; 1/2

W_WO

®

The maximum ofW is located at the radial position

Ynt1=Yn— 0 SiIN27X,),  Xny1=Xn+tWs(Yni1), 5 W—W; 121-1
=1+ ©)
with Y W—Wo
Ws(y)=a(1-y9). (6) A first set of parameters is chosen as follows:
Herea andb are real numbers and, typicallg=2. The Wo=0.3333
domain of interest in this problem is: o<y<c, and —3 Wg,) W=0.6667 (10
<x<3%(mod 1). w,;=0.1667.

The simplicity of this map makes it possible to study in
depth its mathematical properties, using, in particular, methThe resulting profile(Fig. 1) fits rather closely the experi-
ods based on the renormalization group, in order to analyzeental data recently published by the DIIID te4).
the transition to chaos. From the tokamak point of view, We first consider thainperturbed revtokamafEgs. (1)
however, this map has the same drawbacks as the standatld(2), with K=0 andW()—Wg.(¢). In Fig. 2 we show
map. In particulary cannot be interpreted as a radial coor-a typical phase portrait of the unperturbed revtokamap cor-
dinate, because it takes both positive and negative values.responding to this profile. Compared to the corresponding
In order to model a reversed shear experiment in a tokaportrait for the tokamaysee Fig. 1 or Refl1]), we note the
mak, we use the tokamap, Eq4)—(3), in which we intro-  following features.
duce a winding number functiow(y) that adequately rep- (i) All periodic orbits (starting at¢=0) of winding num-
resents a reversed shear profile. We thus produce ler W>w are absent from the phase portrait. In particular,
Hamiltonian map which satisfies the geometrical constraintghere is no fixed poinfW=1) in this case.
defined above, and is a typical non-twist map. For brevity, (ii) The periodic orbits(starting at¢=0) with winding
we call such a nontwist map a Revtokam@gom here on, numbers in the range,<W<w appear in pairgi.e., there
for the sake of brevity, we denote llgkamapa map[Egs. are two such orbits, located at different values/of
(1)—(3)] with a monotonous winding number profjieThe (iii) The periodic orbits(starting at#=0) with winding
price to be paid is the higher complexity of the revtokamaphumbersw; <W<wj are single(like in the tokamap
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FIG. 2. Unperturbed revtokamap phase portrijrofile: FIG. 4. Revtokamap phase portrait=2.8 [profile: Wg,(1);
Wra(#)]. N=3500].

(iv) The same statements hold, of course, alsokidM  below this “axis,” and are also decreasing upon moving
barriers. We note, in particular, that there @ golden upward above it. It is also interesting to note that the unper-
KAM barriers(W=g, =0.618@3 . . . ), sandwiched between turbed period-3 orbit§on the lower branchwith winding
the periodic orbitsvV= £ and 3. numberw=13, lying on the polar axisdo not generate any

In Fig. 3 we show a revtokamap phase portrait showingsland chain. This is another special feature of the invariant
five orbits(the number of iterations i =1000), for a small polar axis in the revtokamap. We again underline the ab-
value of the stochasticity parametér=0.8. Nothing spec- sence of any fixed point in the present case.
tacular appears here. The periodic orbits generate island These pictures could convey the message that a nontwist
chains, whereas irrational winding numbers prodkg®  map roughly behaves like two “halves” of a tokamap put
barriers. Let us recall that the real winding number in a pertogether, each of them being the image of the other in a
turbed map of form(1) is no longer given by the function “mirror” located at the maximum of the winding number
Wg(¥), but rather must be estimated directly from the defi-profile. Such a statement is valid only for small values of the
nition stochasticity parametefit will be seen below, however, that

some very peculiar phenomena may occur in the revtokamap
. 0,—0, even at very small values ¢&.)
w= lim y 11 Figure 4 represents a phase portrait of the revtokamap for
e K=2.8, a rather moderate value: for the monotonous toka-
map, there is no global chaos for this valuekaf The fol-
lowing features appear in this case.

(i) The symmetry axiss rather strongly distorted.

(i) In a certain strip around this “symmetry axis,” the
phase portrait is similar to the previous onéAM barriers
“and islands come in “symmetric” pairs below and above the
period-3 orbit 10rWi(0.44949)-  in the unperturbed case po it R8T (00 4O EEH AN BTl =5 - 810 T
of Fig. 2]' There instead appearsl@M barrier at_thls maxl- — are very nicely shaped: the chaotic layers around them are so
mum winding number. Although it is not a straight liné par- iy that they cannot be seen in this picture. The whole re-

allgl ,t,o the § a_xis_, it plays the role of a kin.d of “symmetry gion within and below this strip is almost perfectly regular
axis.” The winding numbers corresponding to successw«zi e., nonchaotic

KAM barriers or islands decrease upon moving downwar (iii) The most conspicuous feature is seen in the upper

part of the phase portrait, which is invaded by a chaotic orbit.
Within this chaotic region some structure can be sé&mn
usua): thus a two-island chain mirroring the lowes= 3
islands is clearly visible. On the other hand, only a few of the
3500 points of the chaotic orbit depicted here are visible. The
reason for this is that most iterates of the starting poif (
=0.8, §,=0.2) wander out of the physical region into the
region, »>1. Thusin the upper part of the revtokamap
phase space the chaos is glob&n the other handthis
0 02 °"‘e°'6 08 1 chaotic region is very sharply bounded below by a KAM
barrier. In the present example we find that the bounding
FIG. 3. Revtokamap phase portradt=0.8 [profile: Wg,(#); KAM shown in Fig. 4 corresponds te~0.5772. We note, in
N=1000]. passing, that this barrier lies well above the goldéaM

where® , is the lift of the angled,,, (i.e., its value calculated
without the prescription “mod 1). As a result, it appears
that the winding numbew =3 is no longer attained foK
#0: the maximum appears to he~0.6663 ... (for K
=0.8). This being an irrational number, there is no three
island chain in the middle of the diagrd@volving from the
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FIG. 5. Typical chaotic revtokamap orbit in the extended phas

space N—2300). (@) K—0.25.(b) K=1.4. (c) K—6.3. Srom the edge by the transport barrier. Ksncreases further

[e.g.,K=6.3, Fig. 8c)], the core region begins to develop
localized chaotic belts. Nevertheless, for quite a rangk,of
surface. Thus there appears within the physical domain ¢he two (upper and lowerchaotic regions remain separated
barrier, sharply separatingragular core regionfrom aglo-  from each other by a remnant of the transport barrier. This
bally stochastic edge regioWe are tempted to call this a can be seen in Fig. éa magnified picture of the physical
transport barrier. region, which shows a lower chaotic region separated from
The concept of a transport barrier in reversed shear corthe upper one by a regular 14-island chain with
figurations has been very widely discussed in the recent lit=0.642 83(~).
erature[4—13] (see also Ref.12] in which many papers are To sum up, the previous results show an unexpected prop-
devoted to this problejnlit has been clearly defined in Ref. erty of the revtokamap, which can be callseémiglobal
[4] as “a localized region within the plasma where the ther-chaos Even for very small values of the stochasticity param-
mal and particle transport are much smaller than in the sureter there appears a semi-infinite globally chaotic region
rounding regions.” | would rather define the transport barrierbounded below by &AM barrier. Above that barrier the
as thesurfaceseparating regions of low and high transport. orbits extend chaotically without limits towards largk
Its occurrence has been related to specific plasmadynamicahereas below that barrier the orbits are reggkasM bar-
mechanisms by the authors quoted above. Here | wish to beers or island chains surrounded by thin stochastic layers
very prudent in my statements. In the revtokamap modeThe critical barrier is located in the unphysical region
there is noexplicit treatment of the charged particles. The >1 for smallK, and moves downward with increasiixg
magnetic field configuration istatic it is produced, how- until it reaches the limity=1 of the physical region. For
ever, by an underlying distribution of currents in the plasmak>K, thetransport barrierseparates the physical domain
It appears, nevertheless, that the mere consideration of thiato two parts: the upper one is globally stochastic, whereas
magnetic field configuration gives rise to a similar phenom-the lower one remains regular up to rather large valuds. of
enon. The nonlinearity of the Hamiltonian revtokamap, com-The two regions remain insulated from each other over a
bined with a reversed shear profile, produces a transport bawide range oK, even when the lower one becomes chaotic.
rier within the physical region, for a stochasticity parameter It is very interesting to note that a phenomenon quite
larger than some threshold:>K+. The precise relation of similar to a transport barrier was found in Rgf5]. These
this phenomenon to the plasma transport barrier found irmuthors studied a one-dimensional strongly driven anhar-
experiments has to be considered more closely in forthcommonic oscillator, described by a Hamiltonidh= % p?+ x4
ing work; | cannot believe, however, that this is a mere ac—+ gx cosr, (where 8 is the stochasticity parameter and
cident. >2 is a positive parameterin their system[after transfor-
The threshold valu&; cannot be defined very precisely. mation to action and angle variabled, §)] the winding
We suggest the following procedure. Consider the revtokanumber profile presentsrainimumat a finite value ofl. For
mapextended above the physical range>1. We note that a sufficiently large value of the coupling parameter, a semi-
even for very small values df there is a “ghost” transport  global chaotic regime is visible in the Poincasection(ob-
barrier in the unphysical randéig. 5a)]. As K increases, tained by numerical integration of the continuous time dif-
the transport barrier moves downwards. We define thderential equations The arrangement is, however, opposite
thresholdK ; as the value oK for which the transport barrier of the one appearing in the revtokaméfigs. 4 and & a
enters the physical domain: with the present parameters, weansport barrier separatesare regionthat ischaotig from
find K~1.4 [Fig. 5b)]. The definition is not very sharp, anedge regiorthat isregular (Fig. 6 of Ref.[15]). The core
because the barrier is not a straight horizontal line, but ratheegion thus acts as ehaotic trap This result clearly shows
a somewhat complicated curve. A¢beyond this value, we the complementary behaviors of nontwist maps with winding
reach a situation like in Fig. 4, with a core region insulatednumber profiles having a maximum and profiles having a
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minimum. The important point is that semiglobal chaotic be-quantitatively, we write down the equations determining the
havior seems to be a generic property of nontwist mapsgixed points by using Eqsl) and (2) with ¢, =¢,=¢
originating from very different physical problems. and@,,,=60,=6:

Ill. FIXED POINT ANALYSIS % sin 276=0. (12)
It was shown in Ref[1] that a number of interesting
bifurcations appear in th@ositive shegrtokamap when the
control parameterk and/orw are varied. In the revtokamap,
bifurcation phenomena occur which are characteristic of
nontwist maps, but are also due to the invariance of the polar
axis. Some of these nontwist map phenomena were first stud- The study of fixed points should be completed binaar
ied in Refs.[14] and[18-21. stability analysis, based on the calculation of thesidue
We start our considerations with an analysis of fixed ~ Rg=3(2—Tr M), (whereM is the matrix defining the tan-
points of the revtokamap. As we know from Sec. Il, fixed gent map[22—-25. The form of the residue is very similar to

points do not always exist. In order to study the problemEq. (44) of Ref.[1], with W()—Wg(#):

W(lﬂ) WWCOSZIT@ 0 (mod 1). (13)

K 1 2

(1+¢)? 2m(1+¢)°+K sin 2m6

sin 2r— K_¥¢ cog 2mwh+4mKwac(cy—1) v cos 2761,
m (1+¢)* 1+
(14

where a and c are defined by Eqgs(8). The fixed point Consider first the case=0. Combining Eqs(17)—(19),
(around which the map is linearizeds linearly stable(O  we find that there exists a real solution of Eij6) for
point), whenever 8=Rr=<1, otherwise it is an unstabl¥
point. We look for solutions of Eq9.12) and (13) in the
physical domain: & ¢<1 and O< <1, with 0<K<27.
Equation(12) has a first class of solutions, like in the
tokamap, fory=0, corresponding to fixed points on the po- We note that within the physical range of the stochasticity
lar axis. Equatior(13) then reduces to parameterK/(27)? is a very small number. Hence, even
whenw>K/(27)?, the restrictionwy<K/(2)? is physi-
K cally uninteresting. An analogous discussion of the aase
Gr(0,K,nwo) =Wo— 5757 c0s 2r6—n=0, (15 >3 also leads to the conclusion thatand w, would be
restricted to physically irrelevaritoo large values.

K
0<w0smin<m,w) . (20

where the definitiorw,=W(0) was usedn is an arbitrary The physically relevant case is thos- 1. In this case we

integer. This equation has the obvious solution define a minimum and a maximum threshold, just as in the
tokamap case, E¢55) of Ref. [1]:

2)?
COS 2r = K (Wp—n). (16) 1 1 K 01

This solution is real iff

In the revtokamap, we identify three possibilities.
K K
———<Wy=n+ (17) (a) When

(2m (2m?*

This condition only involves the winding number on axis,
W, additional constraints must, however, be satisfied. We real solution for the fixed point exists whenever
first note that zero or negative values are excluded for the

W=Wy , (22

unperturbed winding numbat. A vanishingW would cor- WinS<WosWy . (23
respond to an infinitey, and this value cannot be crossed. (b) When
Hence, we must assume

W SWSsWy, (24)

we>0, w>0, w;>0. (19

) o . a real solution for the fixed point exists whenever
On the other handy being (by definition a maximum,

we have the two obvious conditions: WS Wo<W. (25

Wo<w,  W;<w. (19  (c) When
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1 1 b tion (12) then requires sin26=0, with the solutions#= 1
08 a 0.8 - and 6=0. Substituting these values into E§.3), we find
« 0.6 06
= < \ =1 Fy(gK n)=w « =0
S 04 =04 0=73: Fi(K,wo,w;n)=Wg(#)+ m—n— ,
N ! 28
02 < 02 (28
0 \ 0
098 099 1 101 102 098 099 1 101 102 K
wo w0 6=0: Fy(¢;K,Wo,W;n)=Wg(¢)) — 5—7>773—N=0,
2(¢ 0 ) R(l/j) (277)2(1+ lp)Z
FIG. 7. Angular position of the fixed point$; and X, on the (29

polar axis.K=0.5.(a) w=1.2. (b) w=1.

The number and nature of the solutions of these equations
(26) depends on the relative values of the parameters, wg,
andn (we recall thatwv, is fixed once for all. For simplicity,
. : i . we restrict our discussion to a range of values of the maxi-
there exists no real solution for the fixed point on the p(_)lar um, w, close tow=1, which are realistic for a tokamak.
axis. It therefore appears that the_ nhumber and type of fixe he extension to higher or smaller values can easily be done
points on the polar axis is determined by the relative value§as in Ref[1])
of wy and ofw. The value ofw; is not relevant here, as long e
as it remains belowv,. The casew,>w, appears to be be
physically uninteresting. Therefore, in the present discussiogn
the value ofw, is fixed once for allw; will not be consid-
ered as a variable control parameter
Case(a) is very similar to the tokamap situation. The
discussion of Ref[1] can be transposed here by replacing
the tokamap parameter by the revtokamap parameter.
For givenkK, and fixedw>w,, , there exist two fixed points
on the polar axis, in a limited window of values of,.
Equation (14) shows that the corresponding residues ar

negative, hence both fixed points axepoints. Consider a discussion is guided by the position of the first two param-

ican c;‘nghe r%arrir;steeﬁ Spr?ccr‘(ié?é St?hr_téngaa:;;oer{éei ' AW'J’Lt f.ersteters with respect to the already known bifurcation points
Wi ¢ Prog IVEly Increasing this p ' ! andwy, . The sequence of Fig. 8 shows three typical situa-

there is no fixed point on axis. Whemy=w,,, there sud- tions

denly appears a double fixed point &t3. Whenw, is .

. L i i . We first note that in all three cases, only the chaice
further increased, the latter splits into two fixed points which_ . S . i
move apart until they merge @=0 (=1 mod1) forwy 1 may produce zeros in the physical domain. By varying

=wy, . For higher values ofv, the fixed points disappear. the parameters, the curves=0,2,3 ... mayaiso produce

. . : . ) “physical” roots, but they would correspond to physically
Wy andwy are th_usblfurcatmn points assoc_lated W'.th the irrelevant values ofvy andw, and will not be further dis-
appearance or d|sappgarance_ of fixed paints. This case &ussed. We thus henceforfix the value 1. Figure 8 il-
illustrated for the following choice of parameters: lustrates three characteristic cases

K=0.5, w,=0.98733, wy,=1.01267. (27 (@ Wo<Wp,, W<Wwp,. In this case none of the curvés
andF, (for n=1) intersect the/ axis: the revtokamap has
For casea) we takew=1.2>w,,. We also fix the value no fixed points at all.
of w;=0.166 67 in all the forthcoming figures. Thevalues (b) wo<wp,, w>wy . In this case, each one of the func-
of the two X points are shown in Fig.(@). For casegb), we tionsF; andF, has two zeros in the physical domain, and
choosew=1<w,,. The fixed points start again together at hence the revtokamap has four fixed points. The fixed points
#=0.5, then move apart for increasing,. In order to  generated by, are denoted a¥y; (¥11,6,,=0.5) andY;,
satisfy condition (19), however, the scan must stop at (#/12,601,=0.5), with ,,;<<¢,. The fixed points generated
6,=0.25 and§,=0.75, forwy=1(=w) [Fig. 7(b)]. Above by F, are denoted a¥,; (¥1,6,1=0), andYy;, (22,62,
this value (vo>w) the winding number profile no longer has =0), with ,;<¢,,. The evaluation of the corresponding
a maximum, and hence the revtokamap reduces to a monottesidues shows thaf,; andY,, are X points, wherea¥ ;,
nous tokamap. Note, however, thag=w is not a bifurca- andY,; areO points.
tion point: theX points on axis also exist in a tokamap, as  (C) Wo>Wy, W>w,, . Each of the function&,; andF,
shown in Ref[1]. Finally, in casg(c) there is no fixed point possesses a single zero in the physical domain, because the
at all on the polar axis. The consequences of this behavigtoordinatesy; and ¢,, are negative in this case. The rev-
will be discussed below, after the analysis of the other fixedokamap now possesses two fixed points in the physical
points. range: arD point Y, and anX pointY,,. Although the fixed
We now discuss the second set of fixed points in the revpoints Y, andY,, are unphysicaland hence invisible in a
tokamap, arising from Egq€12) and(13) with #0. Equa- polar plot, and inaccessible from the physical regigheir

W<1—W:Wm,

We start our analysis by fixing the value Bf=0.5 as
fore. This also determines the values of the threshejds
dwy, as in Eq.(27). A graphical visualization is obtained
by plotting (numerically the curved=,(#) andF,(#). Itis
seen(Fig. 8) that both curves possess a maximum, and hence
each of them may intersect thjeaxis in two points[F ()

has a singularity aiy=—1, and hence it produces a third
zero, which is, however, always negative, and hence un-
physical. The discussion amounts to determining the num-
ber and location of the zeroes belonging to the physical do-
€main O< y=<1, for different values ofwy, w, andn. The
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FIG. 8. The curve$; andF, vs ¢ for K=0.5. From top to bottomn=0 (dash-dotted ling n=1 (solid line), n=2 (dashed ling (a)
Wo<Wp,, W<Wp, (Wg=0.8,w=0.9). (b) Wo<Wg,, W>Wy (Wy=0.8,w=1.2).(c) Wg>Wp, W>wy (Wo=1.15,w=1.2).

formal inclusion in the discussion is useful for a clear under- Note that in all cases the PoinceBertrand theorem is
standing of the phase space structure, as will be shown igatisfied, i.e., there is an equal humber@fpoints andX
Sec. IV. points,provided that both physical and unphysical points are

The three cases considered above correspond to situatioteken into accountThis fact was already noted in the case of
where both parametevg, andw lie outside the domaifw,,, the Tokamag1].
wy 1. A rich variety of bifurcation phenomena occur when  The next natural question is what happens when the sto-
wg and/orw enter the latter domain. The variety is due to thechasticity parameter is varied. The only role Kfin this
fact that the zeros of the functiofis andF, (see Fig. 8do  respect is to determine the valuesvaf, andwy, [Eq. (21)]
not cross the physical border=0 simultaneously. (and also ofwg), without changing their relative positions.

Thus, for instance, fow>w,,, when w, crosses the Thus a change oK will simply produce a change in the
lower bifurcation pointw,, (i.e., w,<wy<wy), the former  width of the intervals bounded by the three bifurcation
X point Y, crosses the bordenr/f;<<0) and becomes a@  points. As a resultthe results of Table | are valid for all K
point; simultaneouslyas shown abovyethere appear twX
points on the polar axis. In this situation the revtokamap has
three X points and thre® points, one of which is unphysi-
cal.

If, on the other handw, is kept fixed (vo<w,,), we We now illustrate the various types of bifurcations de-
would (naively) expect a bifurcation whemv crossesw,, rived in Sec. Il by exhibiting phase portraits corresponding
from above. This is, however, not the casdthough an in- to the various situations described in Table I. We first show
teresting phenomenon occurs at this point, as shown in Seseveral phase portraitdl& 600) of the revtokamap for fixed
IV). The bifurcation occurs at a slightly lower valwes, K=0.5 in various situations. The choice of this relatively
through a merging of th® point Y,; and theX point Y, small value ofK is justified as follows. For this value d&€
followed by their disappearance fav<wg. There exists the island chains are still quite well defined, and the phenom-
thus a third bifurcation pointvg located betweenv,, and ena are clearly visible. For larger valuestothe classifica-
w), . Its position depends on the value wf,, and can un- tion of Table | remains valid, but thicker stochastic layers

IV. BIFURCATIONS AND RECONNECTIONS
IN THE REVTOKAMAP

fortunately not be expressed analytically. build up around the islands, making the visualization of the
The various possibilities have been considered systematiphenomena less clear.
cally (for givenK) by successively fixingv inside or outside In case IA w>wy ,wo<w,,) there are two fixedO

one of the intervals determined by the “landmarks” points and two fixe points in the physical domaiffrig. 9).
(wn,,Wg,Wy,) and varyingw,. The result of this investiga- This configuration represents a typidadteroclinical topol-

tion is given in Table I. In this table, the symb¢d] and[X]  ogy. the separatrix of each island has two branches, each one
characterize the stability of the fixed points; a sign de-  joining oneX point to the nex{in a portrait continued peri-
notes a positive value of (i.e., a physical fixed pointa  odically in .) Whenwy increases, the lower island progres-
sign (—) denotes a negative value ¢f(i.e., an unphysical sively moves downward, but is squeezed against the impen-
fixed poiny, and a symbol “No” denotes the absence of the etrable polar axis. Whew,=w,,, the X point Y, reaches
corresponding fixed point. =0 and merges with the twX points X; and X, which
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TABLE |. Fixed points of the revtokamap.

PRE 58

=0 6=0 #=0.5
X1,X2 Y21 Y22 Y11 Y12
W>Wy
1A Wo<Wp, No [O]+ [X]+ [X]+ [O]+
I B W, <Wo<Wpg [XT,[X] [O]+ [X]+ [O]—- [O]+
IC We<Wo<Wy, [X],[X] [O]+ [X]+ [O]—- [O]+
1D Wy <Wq No [X]— [X]+ [O]—- [O]+
Wg<W<Wpy
A Wo<Wp, No [O]+ [X]+ [X]+ [O]+
Il B W <Wo<Wpg [X],[X] [O]+ [X]+ [O]—- [O]+
IIc We<Wo<Wy, [X],[X] [O]+ [X]+ [O]- [O]+
W, <w<wg
1A Wo<Wp, No No No [X]+ [O]+
B W <Wo<Wpg [X],[X] No No [O]—- [O]+
wW<Wp,
IV A Wo<Wp, No No No No No

appear at this momeiiFig. 10a)]. Just above the bifurca-
tion, the latterX points are separated, and a “ghosd’point
appears in the unphysical regipiRig. 10b)]: we are now in
the situation IB of Table I. In the terminology of R¢1.], the
bifurcation produces a decay of tixepoint Y4, into two X
points and arD point, with conservation of the stability in-
dex (equal to the number o® points minus number oK
pointg. Note that the bifurcation is accompanied byeaon-
nectionof the separatrices around the islands centered,gn
andY,q; the topology remains, however, heteroclinic. g

is further increased, the size of the physical island around

Y, decreases. The crossing wg produces no bifurcation,
but, asw, reacheswy,, [Fig. 10(c)] the latter island disap-
pears, as well as the tw¥ points X; and X,. This second
bifurcation thus produces a “recombination” of twX

points and arO point, producing a newX point in the un-
physical regior{Fig. 10(d)]. This type of bifurcation occurs

1 T T T

0.8 3

06

v

04 .

02 -

also in the Tokamapl]. During this sequence of bifurca-
tions, the upper island around,, (not shown in Fig. 1D
remains almost unaffected. One therefore ends up, after the
passage olvy through the “bifurcation belt,” in situation 1D
of Table | (Fig. 11). A single fixed O point is left in the
physical domain: its former “companion” has disappeared
(because it has moved into the unphysical domain.

0.05 T T 0.05 T T T

N /4
NeZg

T
vl
v oo

0.25 0.5 0.75 1 0

0.05 T T T

0.05 T T T

FIG. 10. Disappearance of fixed points by passage through two
bifurcations(extended phase spac&ixed: w>w,, (w=1.2). (a)
First bifurcation:wy=w,, (wy=0.987 33).(b) Case IB:w,<w,

FIG. 9. The two one-island chains, heteroclinic topology, case<wg (wp=1). (c) Second bifurcationwy=wy, (wy=1.012 67).

IA: w>wy, , Wo<w,, (Wg=0.8,w=1.2).

(d) Case ID:wy>wy, (Wo=1.2).
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FIG. 11. Single one-island chain in the physical domain, case T ' f
ID: w>wy,, Wo>wy (Wg=1.1,w=1.2). b
04 7

Case Il (v, <w<wpg) is very interesting because it ex-
hibits quite a different topology. In this case, the function
has no roots, hence only; produces fixed points. When
wo<w,, (case lllA), there is anO point and anX point, Y
aligned at the same value 6f=0.5[Fig. 12a)]. This gives
rise to ahomoclinic topologyin which the separatrix starting
from the X point returns to the same point. For increasing
Wy, a bifurcation occurs atvg=w,,, when theX point
reaches the polar axis and merges with the newly Born
points[Fig. 12b)]. The bifurcation produces a decay of the
X pointY,; into two X points and a gho$d point (case 1IB. 0.1 0 025 05 075 1
The structure of the islands in the extended phase Jfage ' '
12(c)] is particularly interesting. It displays tw@® points
aligned on8=0.5 encircled by islands, and twépoints on f T T
the polar axis. This type of structure was called a “dipole C
structure” by del-Castillo-Negrete and co-work¢i8—21]. 04 -]
Here, however, it appears as a “ghost dipole,” because one
of the islands is located in the unphysical region andXhe
points are on the polar axis. Hence, in realfbe., in the
polar representationonly the upper island is visible. y
We consider next a different type of scan, keeping
fixed (wo<w,,) and starting atv>w,,, case IA, with two
island chains in heteroclinic configuratipRig. 13a)]. w is
now lowered, until it reachew=w,,. There isno bifurca-
tion at this point: there are still tw® points and twoX
points; but the upper separatrix touches the loXgmwint at
6= 3. This produces reconnectiorof the two separatrices 0.1
and areorganization into a homoclinic topolod¥ig. 13b)].
A remarkable fact is thathis process, which involves an
overlap of island chains, does not produce chaotizatiris FIG. 12. Dipole formation, homoclinic topology, by passage
reconnection leading to a change of topology without bifur-through a bifurcation(extended phase spaceFixed w: wy,<w
cation and without chaotization is a characteristic property ok, (w=1). (a) Single one-island chain, homoclinic, case IlIA:
nontwist maps, first described by Howard and Hpb8 and ~ w,<w,, (w,=0.8). (b) Bifurcation: wy=w,, (w=0.987 33).(c)
also by del-Castillo-Negrete and co-work¢i®—21. Upon  Dipole (“ghost”), case HIB:w,<wy<wg (Wo=0.99).
further lowering ofw, the size of the island around,; de-
creases until, av=wyg, the O pointY,; and theX pointY,, there are no fixed points left in the revtokam@ase IVA.
merge. As a result of this bifurcation, this island disappears: To sum up these results, we have seen that the revtoka-
we are in case IlIAFig. 13c)]. Whenw further decreases, map presents a rich variety of bifurcations leading to very
the unique remaining island shrinks while moving very little different phase portraits. Some of them are of the same na-
downward. Whenw crosses the second bifurcation point ture as in the standard nontwist map, but there are additional
w,,, the O point merges with theX point and the island types in the revtokamap, due to the presence of the impen-
disappears “on the spot[Fig. 13d)]. Below this threshold etrable polar axis.

0 0.25 0.5 0.75 1
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FIG. 13. Separatrix reconnection and disappearance of fixed
points in homoclinic topology, by passage through two bifurcations.
Fixed: wo<w,, (wy=0.8). (@) Above reconnectioricase IA: w
>wy (w=1.05). (b) At reconnectionw=w,, (w=1.012 67).(c)
Below first bifurcation(case llIA): w,<w<wg (w=1.005). (d)

Just above second bifurcation=w,, (w=0.993). (e) Below sec-
ond bifurcation(case IVA: w<w,, (w=0.98).

The last point we wish to discuss in this section is the
phenomenon otollision of periodic orbits This phenom-
enon was also first exhibited in Refd4] and[18-21] in the
standard nontwist map; its appearance is very similar in the
revtokamap. For a clear visualization, we now consider a
sequence of phase portraits of the revtokamagfitad val-
ues of w and y. For convenience, we choose=0.67 and
w=0.3333 (v,=0.166 67, as befojeWe study the evolu- FIG. 14. Collision ofw:§ islands by passage through recon-
tion of the pair of island chains corresponding to windingnection and bifurcation upon increasing. w=0.67 and wg
numberw=% for varying K. We start atk=1.5: the two  =0.3333(both fixed. (a) Below reconnectionK=1.5). (b) Be-
island chains have heteroclinic topology, and are locatedveen reconnection and bifurcatiok £2). (c) Above bifurcation
rather close to each othFig. 14a)]. As K increases, the (K=2.15).
two island chains move closer together until a critical value
of K is reached: a process of separatrix reconnection happetise W profileare colliding. The homoclinic topology ensures
at this point, with a transition to homoclinic topolodffig.  the mutual “insulation” of the two island chains: although
14(b)]. This reconnection is similar to the one of Fig.(h8  strongly overlapping in space, they are isolated from each
Let us stress again that the overlapping of island chains doesther by their homoclinic separatrices. Ksis further in-
not produce chaos. Such nondestructive overlapping is prasreased, the islands shrink, and finally disappear after the
duced when islands correspondingdifferent branches of passage through a second critical valueKoproducing a
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0.55 T T T 1 islands appear to be shifted thwith respect to each other,
both for odd and even periods. The mechanism of reconnec-
tion is therefore always like in Fig. 14. We found no combi-
nation of parameters which would lead to physical dipole
formation.

0.5

Y 0.45 V. CONCLUSIONS

We have shown that a simple iterative m@pvtokamap
can be constructed, fulfilling the minimum requirements for
a representation of a magnetic field in toroidal geometry with
a reversed shear configuration. It is a typical Hamiltonian
nontwist map. The presence of a honmonotonous winding
035 1 I : ! number profile introduces a number of features as compared
0 02 04 06 08 1 to the monotonous tokamap. In particular, there appears a
9 “transport barrier” separating a robust, central region from a
semiglobally chaotic edge region. This transport barrier ex-
FIG. 15. Collision Ofw:% islands between reconnection and jsts even for small values of the Stochasticity paramgter
bifurcation.K=1.8, w=0.754, andwv,=0.3333. On the other hand, a variety of bifurcation phenomena is
exhibited in the central region, depending on the relative
bifurcation[Fig. 14(c)]: there are no longer any=3 islands  yalues of the control parametes w, andw,. These result
left above this value oK. o from the combination of the properties of general nontwist
An interesting case is illustrated in Fig. 15. We see here gnaps with the specific features of the revtokartiapariance
collision of period-4 orbits:the process is exactly the same of the polar axis It would be very interesting to envisage an
as for the collision of period-3 orbits illustrated in Fig. 14: experimental test of these unusual bifurcation and reconnec-
starting from two neighboring four-island chains with hetero-tjgn phenomena in a real tokamak.
clinic topology and increasing, a separatrix reconnection  \any more properties of the tokamap and of the revtoka-
produces the homoclinic topology shown in Fig. 15, fol- map will be studied in forthcoming works. These include
lowed by the disappearance of the islands. The unusual fegnestions such as the dependence on the parameters of vari-
ture is precisely that there is no difference with the period-3yys physical properties, similarity and scaling properties.
case. In the standard nontwist mid. (7)] studied in Refs. | a5t but not least, we intend to introduce charged particles
[18-21], there appears an essential difference between odgto this magnetic field and study the transport of particles
and even-period island chains: the latter collide by producingyng heat in a partially chaotic tokamak configuration. This

real dipole structures as in Fig. &2 This is only possible proplem, which is very poorly understood, is of crucial im-
when theO points(and also theX pointg of the initial neigh-  portance for fusion physics.

boring island chains are aligned on the same valug dhis

0.4
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