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Hamiltonian nontwist map for magnetic field lines with locally reversed shear
in toroidal geometry

R. Balescu
Association Euratom-Etat Belge pour la Fusion, Universite´ Libre de Bruxelles, Code Postal 231, Campus Plaine,

Boulevard du Triomphe, B-1050 Bruxelles, Belgium
~Received 21 April 1998!

A simple Hamiltonian map is constructed, fulfilling the minimum requirements for the representation of a
tokamak magnetic field in reversed shear configuration. This ‘‘revtokamap’’ is a typical nontwist map, for
which many theorems of ‘‘traditional’’ dynamical systems theory do not apply. It is shown that in the rev-
tokamap, for finite stochasticity parameter, a critical surface appears, separating an external, globally stochastic
region from a robust nonstochastic core region. This phenomenon of ‘‘semiglobal chaos’’ is analogous to the
well-known appearance of an internal transport barrier in reversed shear tokamak experiments. An analysis of
the fixed points reveals a variety of bifurcation and reconnection phenomena, which appear to be generic for
nontwist maps with an impenetrable polar axis.@S1063-651X~98!09809-2#

PACS number~s!: 52.25.Fi, 05.45.1b, 52.25.Gj
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I. INTRODUCTION

In a previous work@1# we constructed an iterative map
called atokamap, representing a model of the magnetic fie
lines in a toroidally confined plasma, such as in a tokam
configuration. Such a map generates phase portraits of
sibly chaotic orbits in a much simpler way than the dire
integration of the field line differential equations. It is we
known that the latter have a Hamiltonian form in which t
toroidal flux coordinatec ~divided byB0a2) and the poloidal
angle coordinateu ~divided by 2p! play respective roles o
canonically conjugate momentum and position variables,
toroidal anglez ~divided by 2p! plays the role of time, and
the poloidal fluxa~c,u,z! ~scaled byB0a2) is the Hamil-
tonian. ~HereB0 is a characteristic magnetic field intensit
and a is the minor radius of the torus!. It is, in general,
impossible to construct a map that isexactly equivalentto a
given Hamiltonian system without solving the equations
motion ~which is precisely what one wants to avoid!. One
wishes to construct, instead, a modelab initio, and check its
relevancea posteriori. A map representing a global pictur
of a tokamak cross section perpendicular to the magn
axis should satisfy at least two important constraints:

~i! The map should be Hamiltonian~or symplectic!, hence
area preserving. This implies@2,3# that the coordinates
(cn11 ,un11) at ‘‘time’’ n11 be related to the coordinate
(cn ,un) at ‘‘time’’ n by a canonical transformation~heren
is an integer!.

~ii ! The map must becompatible with toroidal geometry.
This implies that the radial coordinatec be a definite posi-
tive number. In particular, if at time zeroc0.0, then at all
later timesn, cn.0; and if c050, thencn50 for all n.
Thus the polar axis must be an impenetrable barrier.

It was shown in Ref.@1# that the following map satisfie
the constraints

cn115cn2
K

2p

cn11

11cn11
sin 2pun , ~1!
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un115un1W~cn11!2
K

~2p!2

1

~11cn11!2 cos 2pun .

~2!

Here K is a real number called thestochasticity param-
eter; its range of physical interest is 0<K<2p. W(c) is the
unperturbedwinding number@or the inverse safety factor
1/q(c)#: its role will be thoroughly discussed below. Rel
tion ~1! is made explicit by solving forcn11 and keeping
only the positive root:

cn115 1
2 $P~cn ,un!1A@P~cn ,un!#214cn%, ~3!

where the functionP(c,u) is defined as

P~c,u!5c212
K

2p
sin 2pu. ~4!

The map defined by Eqs.~1!–~4! is called the Tokamap. It
was shown that it reproduces qualitatively many global f
tures of the magnetic configurations found in tokamak
periments.

The winding number profileW(c) determines the prop
erties of the phase portrait in an essential way. In Ref.@1# a
class of Tokamaps was studied, corresponding to ‘‘classic
experiments in whichW(c) is a monotonously decreasin
function of c @henceq(c) is a monotonously increasin
function#. In ‘‘tokamak terminology,’’ this is expressed b
saying that theshear s5@c/q(c)#dq(c)/dc is definite
positive over the whole range of the radial coordinate.
‘‘dynamical systems language,’’ this means that these to
maps aretwist maps.

In recent years an important amount of work, both expe
mental and theoretical, has been devoted to tokamak s
tions with a locally reversed shear~see, e.g., Refs.@4–12#
and further references therein!. In these experiments, th
safety factor profile has a local minimum; hence theW(c)
function is no longer a monotonously decreasing functi
but rather possesses a maximum. The main importanc
suchreversed shear configurationsfor controlled fusion re-
3781 © 1998 The American Physical Society
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3782 PRE 58R. BALESCU
sults from the formation of aninternal transport barrier~ap-
parently first mentioned in Ref.@4#!. The radial transport in
the central region is thus significantly reduced, the core
ing efficiently insulated from the outside. As a result, t
temperature and density profiles have a very flat sectio
the core, followed by an abrupt drop near the edge~this
feature is particularly visible in the experiments described
Refs. @11,12#!. Because of these favorable phenomena,
reversed shear appears as an essential ingredient of th
called ‘‘advanced tokamak scenarios’’@13#!. Theoretical
work has been concentrated on mechanisms of stabiliza
of some instabilities by the effect of shear~trapped particle
modes,E3B velocity shear effects, etc.!. It will be shown
here that the tokamap reproduces the formation of a m
netic field configuration that strikingly suggests the prese
of a transport barrier. The~cautious! interpretation of this
fact will be discussed below.

The implementation of a reversed shear profile into
tokamap is very easy: one simply chooses forW(c) an ap-
propriate function which has a maximum at some value oc
between 0 and 1. The resulting map then becomes a typ
nontwist map. Such maps have not been very extensi
studied in the past: in particular, most textbooks on dyna
cal systems do not mention them, because some of
‘‘great’’ theorems ~such as the Kolmogorov-Arnold-Mose
theorem! are not valid for them. A very clear early study o
simple maps of this type is the work by Howards and Ho
@14#. Various aspects of nontwist maps were studied in R
@15–17#. The most extensive existing studies of nontw
maps are found in a series of papers by del-Castillo-Neg
and co-workers@18–21#. In these works the paradigm calle
the standard nontwist mapis analyzed in great detail. Be
cause of its apparent simplicity, this map plays the same
as the Chirikov-Taylor standard map for twist maps. It
defined as follows:

yn115yn2b sin~2pxn!, xn115xn1WS~yn11!, ~5!

with

WS~y!5a~12yq!. ~6!

Herea andb are real numbers and, typically,q52. The
domain of interest in this problem is:2`,y,`, and2 1

2

,x, 1
2 (mod 1).

The simplicity of this map makes it possible to study
depth its mathematical properties, using, in particular, me
ods based on the renormalization group, in order to ana
the transition to chaos. From the tokamak point of vie
however, this map has the same drawbacks as the stan
map. In particular,y cannot be interpreted as a radial coo
dinate, because it takes both positive and negative value

In order to model a reversed shear experiment in a to
mak, we use the tokamap, Eqs.~1!–~3!, in which we intro-
duce a winding number functionW(c) that adequately rep
resents a reversed shear profile. We thus produc
Hamiltonian map which satisfies the geometrical constra
defined above, and is a typical non-twist map. For brev
we call such a nontwist map a Revtokamap.„From here on,
for the sake of brevity, we denote bytokamapa map@Eqs.
~1!–~3!# with a monotonous winding number profile.… The
price to be paid is the higher complexity of the revtokam
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compared to the standard nontwist map. As far as we can
at present, this precludes, for instance, the use of such
egant methods as the renormalization group for the stud
the transition to chaos.

II. GLOBAL PROPERTIES OF THE REVTOKAMAP

There is considerable freedom in the choice of the p
files. In order to study the structure of the revtokamap
consider a simple class ofW profiles of the following form:

WR~c!5w@12a~cc21!2#. ~7!

This function depends on three parameters. In orde
improve the physical insight, we express the latter in ter
of the following quantities:w, the maximum value ofWR ;
w0 , the value ofWR on the axis@w05WR(0)#; andw1 , the
value ofWR at the edge@w15WR(1)#. We then obtain

a5
w2w0

w
, c511S w2w1

w2w0
D 1/2

. ~8!

The maximum ofW is located at the radial position

cM5F11S w2w1

w2w0
D 1/2G21

. ~9!

A first set of parameters is chosen as follows:

WR1H w050.3333
w50.6667
w150.1667.

~10!

The resulting profile~Fig. 1! fits rather closely the experi
mental data recently published by the DIIID team@9#.

We first consider theunperturbed revtokamap, Eqs. ~1!
and~2!, with K50 andW(c)→WR1(c). In Fig. 2 we show
a typical phase portrait of the unperturbed revtokamap c
responding to this profile. Compared to the correspond
portrait for the tokamap~see Fig. 1 or Ref.@1#!, we note the
following features.

~i! All periodic orbits~starting atu50) of winding num-
ber W.w are absent from the phase portrait. In particul
there is no fixed point(W51) in this case.

~ii ! The periodic orbits~starting atu50) with winding
numbers in the rangew0,W,w appear in pairs~i.e., there
are two such orbits, located at different values ofc!.

~iii ! The periodic orbits~starting atu50) with winding
numbersw1,W,w0 are single~like in the tokamap!.

FIG. 1. Unperturbed revtokamap winding number profi
WR1(c).
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~iv! The same statements hold, of course, also forKAM
barriers. We note, in particular, that there aretwo golden
KAM barriers (W5g* 50.61803 . . . ), sandwiched between
the periodic orbitsW5 3

5 and 5
8.

In Fig. 3 we show a revtokamap phase portrait show
five orbits~the number of iterations isN51000), for a small
value of the stochasticity parameterK50.8. Nothing spec-
tacular appears here. The periodic orbits generate is
chains, whereas irrational winding numbers produceKAM
barriers. Let us recall that the real winding number in a p
turbed map of form~1! is no longer given by the function
WR(c), but rather must be estimated directly from the de
nition

v5 lim
n→`

Qn2u0

n
, ~11!

whereQn is the lift of the angleun , ~i.e., its value calculated
without the prescription ‘‘mod 1’’!. As a result, it appears
that the winding numberv5 2

3 is no longer attained forK
Þ0: the maximum appears to bev'0.66639 . . . ~for K
50.8). This being an irrational number, there is no thre
island chain in the middle of the diagram@evolving from the
period-3 orbit forWR(0.44949)5 2

3 in the unperturbed cas
of Fig. 2#. There instead appears aKAM barrier at this maxi-
mum winding number. Although it is not a straight line pa
allel to theu axis, it plays the role of a kind of ‘‘symmetry
axis.’’ The winding numbers corresponding to success
KAM barriers or islands decrease upon moving downw

FIG. 2. Unperturbed revtokamap phase portrait@profile:
WR1(c)#.

FIG. 3. Revtokamap phase portraitK50.8 @profile: WR1(c);
N51000#.
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below this ‘‘axis,’’ and are also decreasing upon movi
upward above it. It is also interesting to note that the unp
turbed period-3 orbits~on the lower branch! with winding
numberv5 1

3 , lying on the polar axisdo not generate any
island chain. This is another special feature of the invari
polar axis in the revtokamap. We again underline the
sence of any fixed point in the present case.

These pictures could convey the message that a nont
map roughly behaves like two ‘‘halves’’ of a tokamap p
together, each of them being the image of the other i
‘‘mirror’’ located at the maximum of the winding numbe
profile. Such a statement is valid only for small values of t
stochasticity parameter.~It will be seen below, however, tha
some very peculiar phenomena may occur in the revtokam
even at very small values ofK.!

Figure 4 represents a phase portrait of the revtokamap
K52.8, a rather moderate value: for the monotonous to
map, there is no global chaos for this value ofK. The fol-
lowing features appear in this case.

~i! The symmetry axisis rather strongly distorted.
~ii ! In a certain strip around this ‘‘symmetry axis,’’ th

phase portrait is similar to the previous one:KAM barriers
and islands come in ‘‘symmetric’’ pairs below and above t
axis. In Fig. 4, two ‘‘golden’’KAM barriersv5g* , and the
two five-island chains withv5 3

5 , are visible. These island
are very nicely shaped: the chaotic layers around them ar
thin that they cannot be seen in this picture. The whole
gion within and below this strip is almost perfectly regul
~i.e., nonchaotic!.

~iii ! The most conspicuous feature is seen in the up
part of the phase portrait, which is invaded by a chaotic or
Within this chaotic region some structure can be seen~as
usual!: thus a two-island chain mirroring the lowerv5 1

2

islands is clearly visible. On the other hand, only a few of t
3500 points of the chaotic orbit depicted here are visible. T
reason for this is that most iterates of the starting point (c0
50.8, u050.2) wander out of the physical region into th
region, c.1. Thus in the upper part of the revtokama
phase space the chaos is global. On the other hand,this
chaotic region is very sharply bounded below by a KA
barrier. In the present example we find that the boundi
KAM shown in Fig. 4 corresponds tov'0.5772. We note, in
passing, that this barrier lies well above the goldenKAM

FIG. 4. Revtokamap phase portraitK52.8 @profile: WR1(c);
N53500#.
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3784 PRE 58R. BALESCU
surface. Thus there appears within the physical doma
barrier, sharply separating aregular core regionfrom a glo-
bally stochastic edge region. We are tempted to call this
transport barrier.

The concept of a transport barrier in reversed shear c
figurations has been very widely discussed in the recent
erature@4–13# ~see also Ref.@12# in which many papers are
devoted to this problem!. It has been clearly defined in Re
@4# as ‘‘a localized region within the plasma where the th
mal and particle transport are much smaller than in the
rounding regions.’’ I would rather define the transport barr
as thesurfaceseparating regions of low and high transpo
Its occurrence has been related to specific plasmadynam
mechanisms by the authors quoted above. Here I wish to
very prudent in my statements. In the revtokamap mo
there is noexplicit treatment of the charged particles. Th
magnetic field configuration isstatic: it is produced, how-
ever, by an underlying distribution of currents in the plasm
It appears, nevertheless, that the mere consideration of
magnetic field configuration gives rise to a similar pheno
enon. The nonlinearity of the Hamiltonian revtokamap, co
bined with a reversed shear profile, produces a transport
rier within the physical region, for a stochasticity parame
larger than some threshold:K.KT . The precise relation o
this phenomenon to the plasma transport barrier found
experiments has to be considered more closely in forthc
ing work; I cannot believe, however, that this is a mere
cident.

The threshold valueKT cannot be defined very precisel
We suggest the following procedure. Consider the revto
mapextended above the physical range, c.1. We note that
even for very small values ofK there is a ‘‘ghost’’ transport
barrier in the unphysical range@Fig. 5~a!#. As K increases,
the transport barrier moves downwards. We define
thresholdKT as the value ofK for which the transport barrie
enters the physical domain: with the present parameters
find K'1.4 @Fig. 5~b!#. The definition is not very sharp
because the barrier is not a straight horizontal line, but ra
a somewhat complicated curve. ForK beyond this value, we
reach a situation like in Fig. 4, with a core region insulat

FIG. 5. Typical chaotic revtokamap orbit in the extended ph
space (N52300). ~a! K50.25. ~b! K51.4. ~c! K56.3.
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from the edge by the transport barrier. AsK increases further
@e.g., K56.3, Fig. 5~c!#, the core region begins to develo
localized chaotic belts. Nevertheless, for quite a range oK,
the two ~upper and lower! chaotic regions remain separate
from each other by a remnant of the transport barrier. T
can be seen in Fig. 6~a magnified picture of the physica
region!, which shows a lower chaotic region separated fro
the upper one by a regular 14-island chain withv
'0.642 83~' 9

14!.
To sum up, the previous results show an unexpected p

erty of the revtokamap, which can be calledsemiglobal
chaos. Even for very small values of the stochasticity para
eter there appears a semi-infinite globally chaotic reg
bounded below by aKAM barrier. Above that barrier the
orbits extend chaotically without limits towards largec,
whereas below that barrier the orbits are regular~KAM bar-
riers or island chains surrounded by thin stochastic laye!.
The critical barrier is located in the unphysical regio
c.1 for smallK, and moves downward with increasingK,
until it reaches the limitc51 of the physical region. For
K.KT , the transport barrierseparates the physical doma
into two parts: the upper one is globally stochastic, wher
the lower one remains regular up to rather large values oK.
The two regions remain insulated from each other ove
wide range ofK, even when the lower one becomes chao

It is very interesting to note that a phenomenon qu
similar to a transport barrier was found in Ref.@15#. These
authors studied a one-dimensional strongly driven anh
monic oscillator, described by a HamiltonianH5 1

2 p21xq

1bx cost, ~where b is the stochasticity parameter andq
.2 is a positive parameter!. In their system,@after transfor-
mation to action and angle variables (J,w)# the winding
number profile presents aminimumat a finite value ofJ. For
a sufficiently large value of the coupling parameter, a se
global chaotic regime is visible in the Poincare´ section~ob-
tained by numerical integration of the continuous time d
ferential equations!. The arrangement is, however, oppos
of the one appearing in the revtokamap~Figs. 4 and 5!: a
transport barrier separates acore regionthat ischaotic, from
anedge regionthat isregular ~Fig. 6 of Ref.@15#!. The core
region thus acts as achaotic trap. This result clearly shows
the complementary behaviors of nontwist maps with wind
number profiles having a maximum and profiles having

e

FIG. 6. Two chaotic orbits separated by an island chain.K
56.3 (N53500).
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minimum. The important point is that semiglobal chaotic b
havior seems to be a generic property of nontwist m
originating from very different physical problems.

III. FIXED POINT ANALYSIS

It was shown in Ref.@1# that a number of interesting
bifurcations appear in the~positive shear! tokamap when the
control parametersK and/orw are varied. In the revtokamap
bifurcation phenomena occur which are characteristic
nontwist maps, but are also due to the invariance of the p
axis. Some of these nontwist map phenomena were first s
ied in Refs.@14# and @18–21#.

We start our considerations with an analysis of thefixed
points of the revtokamap. As we know from Sec. II, fixe
points do not always exist. In order to study the proble
e
o-

is,
W
th

d

-
s

f
ar
d-

quantitatively, we write down the equations determining t
fixed points by using Eqs.~1! and ~2! with cn115cn5c
andun115un5u:

c

11c
sin 2pu50, ~12!

W~c!2
K

~2p!2

1

~11c!2 cos 2pu50 ~mod 1!. ~13!

The study of fixed points should be completed by alinear
stability analysis, based on the calculation of theresidue
RR5 1

4(22Tr M ), ~whereM is the matrix defining the tan
gent map! @22–25#. The form of the residue is very similar t
Eq. ~44! of Ref. @1#, with W(c)→WR(c):
RR52
K

8p H F 1

~11c!22
2p

2p~11c!21K sin 2puGsin 2pu2
K

p

c

~11c!4 cos2 2pu14pKwac~cc21!
c

11c
cos 2puJ ,

~14!
ity
n

e

the
where a and c are defined by Eqs.~8!. The fixed point
~around which the map is linearized! is linearly stable~O
point!, whenever 0<RR<1, otherwise it is an unstableX
point. We look for solutions of Eqs.~12! and ~13! in the
physical domain: 0<c<1 and 0<u<1, with 0<K<2p.

Equation ~12! has a first class of solutions, like in th
tokamap, forc50, corresponding to fixed points on the p
lar axis. Equation~13! then reduces to

GR~u,K,n;w0![w02
K

~2p!2 cos 2pu2n50, ~15!

where the definitionw05W(0) was used;n is an arbitrary
integer. This equation has the obvious solution

cos 2pu5
~2p!2

K
~w02n!. ~16!

This solution is real iff

n2
K

~2p!2 <w0<n1
K

~2p!2 . ~17!

This condition only involves the winding number on ax
w0 ; additional constraints must, however, be satisfied.
first note that zero or negative values are excluded for
unperturbed winding numberW. A vanishingW would cor-
respond to an infiniteq, and this value cannot be crosse
Hence, we must assume

w0.0, w.0, w1.0. ~18!

On the other hand,w being ~by definition! a maximum,
we have the two obvious conditions:

w0,w, w1,w. ~19!
e
e

.

Consider first the casen50. Combining Eqs.~17!–~19!,
we find that there exists a real solution of Eq.~16! for

0,w0<minS K

~2p!2 ,wD . ~20!

We note that within the physical range of the stochastic
parameter,K/(2p)2 is a very small number. Hence, eve
when w.K/(2p)2, the restrictionw0,K/(2p)2 is physi-
cally uninteresting. An analogous discussion of the casn
>2 also leads to the conclusion thatw and w0 would be
restricted to physically irrelevant~too large! values.

The physically relevant case is thusn51. In this case we
define a minimum and a maximum threshold, just as in
tokamap case, Eq.~55! of Ref. @1#:

wm512
K

~2p!2 , wM511
K

~2p!2 . ~21!

In the revtokamap, we identify three possibilities.

~a! When

w>wM , ~22!

a real solution for the fixed point exists whenever

wm<w0<wM . ~23!

~b! When

wm<w<wM , ~24!

a real solution for the fixed point exists whenever

wm<w0<w. ~25!

~c! When
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w,12
K

~2p!2 5wm , ~26!

there exists no real solution for the fixed point on the po
axis. It therefore appears that the number and type of fi
points on the polar axis is determined by the relative val
of w0 and ofw. The value ofw1 is not relevant here, as lon
as it remains beloww0 . The casew1.w0 appears to be
physically uninteresting. Therefore, in the present discuss
the value ofw1 is fixed once for all:w1 will not be consid-
ered as a variable control parameter.

Case ~a! is very similar to the tokamap situation. Th
discussion of Ref.@1# can be transposed here by replaci
the tokamap parameterw by the revtokamap parameterw0 .
For givenK, and fixedw.wM , there exist two fixed points
on the polar axis, in a limited window of values ofw0 .
Equation ~14! shows that the corresponding residues
negative, hence both fixed points areX points. Consider a
scan of the parameter space, by starting at some valuew0
,wm and progressively increasing this parameter. At fi
there is no fixed point on axis. Whenw05wm , there sud-
denly appears a double fixed point atu5 1

2 . When w0 is
further increased, the latter splits into two fixed points wh
move apart until they merge atu50 (51 mod1) for w0
5wM . For higher values ofw0 the fixed points disappear
wm and wM are thusbifurcation points, associated with the
appearance or disappearance of fixed points. This cas
illustrated for the following choice of parameters:

K50.5, wm50.987 33, wM51.012 67. ~27!

For case~a! we takew51.2.wM . We also fix the value
of w150.166 67 in all the forthcoming figures. Theu values
of the twoX points are shown in Fig. 7~a!. For case~b!, we
choosew51,wM . The fixed points start again together
u50.5, then move apart for increasingw0 . In order to
satisfy condition ~19!, however, the scan must stop
u150.25 andu250.75, forw051(5w) @Fig. 7~b!#. Above
this value (w0.w) the winding number profile no longer ha
a maximum, and hence the revtokamap reduces to a mon
nous tokamap. Note, however, thatw05w is not a bifurca-
tion point: theX points on axis also exist in a tokamap,
shown in Ref.@1#. Finally, in case~c! there is no fixed point
at all on the polar axis. The consequences of this beha
will be discussed below, after the analysis of the other fix
points.

We now discuss the second set of fixed points in the r
tokamap, arising from Eqs.~12! and ~13! with cÞ0. Equa-

FIG. 7. Angular position of the fixed pointsX1 and X2 on the
polar axis.K50.5. ~a! w51.2. ~b! w51.
r
d
s
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e
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tion ~12! then requires sin 2pu50, with the solutionsu5 1
2

andu50. Substituting these values into Eq.~13!, we find

u5 1
2 : F1~c;K,w0 ,w;n![WR~c!1

K

~2p!2~11c!22n50,

~28!

u50: F2~c;K,w0 ,w;n![WR~c!2
K

~2p!2~11c!22n50,

~29!

The number and nature of the solutions of these equat
depends on the relative values of the parametersK, w, w0 ,
andn ~we recall thatw1 is fixed once for all!. For simplicity,
we restrict our discussion to a range of values of the ma
mum, w, close tow51, which are realistic for a tokamak
The extension to higher or smaller values can easily be d
~as in Ref.@1#!.

We start our analysis by fixing the value ofK50.5 as
before. This also determines the values of the thresholdswm
andwM as in Eq.~27!. A graphical visualization is obtained
by plotting ~numerically! the curvesF1(c) andF2(c). It is
seen~Fig. 8! that both curves possess a maximum, and he
each of them may intersect thec axis in two points.@F1(c)
has a singularity atc521, and hence it produces a thir
zero, which is, however, always negative, and hence
physical#. The discussion amounts to determining the nu
ber and location of the zeroes belonging to the physical
main 0<c<1, for different values ofw0 , w, and n. The
discussion is guided by the position of the first two para
eters with respect to the already known bifurcation pointswm
and wM . The sequence of Fig. 8 shows three typical situ
tions.

We first note that in all three cases, only the choicen
51 may produce zeros in the physical domain. By varyi
the parameters, the curvesn50,2,3, . . . mayalso produce
‘‘physical’’ roots, but they would correspond to physical
irrelevant values ofw0 and w, and will not be further dis-
cussed. We thus henceforthfix the value n51. Figure 8 il-
lustrates three characteristic cases.

~a! w0,wm , w,wm . In this case none of the curvesF1
and F2 ~for n51) intersect thec axis: the revtokamap ha
no fixed points at all.

~b! w0,wm , w.wM . In this case, each one of the fun
tions F1 and F2 has two zeros in the physical domain, an
hence the revtokamap has four fixed points. The fixed po
generated byF1 are denoted asY11 (c11,u1150.5) andY12
(c12,u1250.5), with c11,c12. The fixed points generate
by F2 are denoted asY21 (c21,u2150), andY22 (c22,u22
50), with c21,c22. The evaluation of the correspondin
residues shows thatY11 and Y22 are X points, whereasY12
andY21 areO points.

~c! w0.wM , w.wM . Each of the functionsF1 and F2
possesses a single zero in the physical domain, becaus
coordinatesc11 and c21 are negative in this case. The re
tokamap now possesses two fixed points in the phys
range: anO point Y12 and anX point Y22. Although the fixed
pointsY11 andY21 are unphysical~and hence invisible in a
polar plot, and inaccessible from the physical region!, their
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FIG. 8. The curvesF1 andF2 vs c for K50.5. From top to bottom:n50 ~dash-dotted line!, n51 ~solid line!, n52 ~dashed line!. ~a!
w0,wm , w,wm (w050.8, w50.9). ~b! w0,wm , w.wM (w050.8, w51.2). ~c! w0.wM , w.wM (w051.15,w51.2).
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formal inclusion in the discussion is useful for a clear und
standing of the phase space structure, as will be show
Sec. IV.

The three cases considered above correspond to situa
where both parametersw0 andw lie outside the domain@wm ,
wM#. A rich variety of bifurcation phenomena occur whe
w0 and/orw enter the latter domain. The variety is due to t
fact that the zeros of the functionsF1 andF2 ~see Fig. 8! do
not cross the physical borderc50 simultaneously.

Thus, for instance, forw.wM , when w0 crosses the
lower bifurcation pointwm ~i.e., wm,w0,wM), the former
X point Y11 crosses the border (c11,0) and becomes anO
point; simultaneously~as shown above! there appear twoX
points on the polar axis. In this situation the revtokamap
threeX points and threeO points, one of which is unphysi
cal.

If, on the other hand,w0 is kept fixed (w0,wm), we
would ~naively! expect a bifurcation whenw crosseswM
from above. This is, however, not the case~although an in-
teresting phenomenon occurs at this point, as shown in
IV !. The bifurcation occurs at a slightly lower valuewB ,
through a merging of theO point Y21 and theX point Y22,
followed by their disappearance forw,wB . There exists
thus a third bifurcation pointwB located betweenwm and
wM . Its position depends on the value ofw0 , and can un-
fortunately not be expressed analytically.

The various possibilities have been considered system
cally ~for givenK! by successively fixingw inside or outside
one of the intervals determined by the ‘‘landmarks
(wm ,wB ,wM) and varyingw0 . The result of this investiga
tion is given in Table I. In this table, the symbols@O# and@X#
characterize the stability of the fixed points; a sign~1! de-
notes a positive value ofc ~i.e., a physical fixed point!, a
sign ~2! denotes a negative value ofc ~i.e., an unphysical
fixed point!, and a symbol ‘‘No’’ denotes the absence of t
corresponding fixed point.
-
in

ns

s

c.

ti-

Note that in all cases the Poincare´-Bertrand theorem is
satisfied, i.e., there is an equal number ofO points andX
points,provided that both physical and unphysical points a
taken into account. This fact was already noted in the case
the Tokamap@1#.

The next natural question is what happens when the
chasticity parameter is varied. The only role ofK in this
respect is to determine the values ofwm andwM @Eq. ~21!#
~and also ofwB), without changing their relative positions
Thus a change ofK will simply produce a change in the
width of the intervals bounded by the three bifurcati
points. As a result,the results of Table I are valid for all K.

IV. BIFURCATIONS AND RECONNECTIONS
IN THE REVTOKAMAP

We now illustrate the various types of bifurcations d
rived in Sec. III by exhibiting phase portraits correspondi
to the various situations described in Table I. We first sh
several phase portraits (N5600) of the revtokamap for fixed
K50.5 in various situations. The choice of this relative
small value ofK is justified as follows. For this value ofK
the island chains are still quite well defined, and the pheno
ena are clearly visible. For larger values ofK the classifica-
tion of Table I remains valid, but thicker stochastic laye
build up around the islands, making the visualization of t
phenomena less clear.

In case IA (w.wM ,w0,wm) there are two fixedO
points and two fixedX points in the physical domain~Fig. 9!.
This configuration represents a typicalheteroclinical topol-
ogy: the separatrix of each island has two branches, each
joining oneX point to the next~in a portrait continued peri-
odically in u.! Whenw0 increases, the lower island progre
sively moves downward, but is squeezed against the imp
etrable polar axis. Whenw05wm , the X point Y11 reaches
c50 and merges with the twoX points X1 and X2 which
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TABLE I. Fixed points of the revtokamap.

c50 u50 u50.5
X1,X2 Y21 Y22 Y11 Y12

w.wM

I A w0,wm No @O#1 @X#1 @X#1 @O#1

I B wm,w0,wB @X#,@X# @O#1 @X#1 @O#2 @O#1

I C wB,w0,wM @X#,@X# @O#1 @X#1 @O#2 @O#1

I D wM,w0 No @X#2 @X#1 @O#2 @O#1

wB,w,wM

II A w0,wm No @O#1 @X#1 @X#1 @O#1

II B wm,w0,wB @X#,@X# @O#1 @X#1 @O#2 @O#1

II C wB,w0,wM @X#,@X# @O#1 @X#1 @O#2 @O#1

wm,w,wB

III A w0,wm No No No @X#1 @O#1

III B wm,w0,wB @X#,@X# No No @O#2 @O#1

w,wm

IV A w0,wm No No No No No
-

-

un
,
-

-

the

ed

as

two
appear at this moment@Fig. 10~a!#. Just above the bifurca
tion, the latterX points are separated, and a ‘‘ghost’’O point
appears in the unphysical region@Fig. 10~b!#: we are now in
the situation IB of Table I. In the terminology of Ref.@1#, the
bifurcation produces a decay of theX point Y11 into two X
points and anO point, with conservation of the stability in
dex ~equal to the number ofO points minus number ofX
points!. Note that the bifurcation is accompanied by arecon-
nectionof the separatrices around the islands centered onY11
andY21; the topology remains, however, heteroclinic. Asw0
is further increased, the size of the physical island aro
Y21 decreases. The crossing ofwB produces no bifurcation
but, asw0 reacheswM , @Fig. 10~c!# the latter island disap
pears, as well as the twoX points X1 and X2 . This second
bifurcation thus produces a ‘‘recombination’’ of twoX
points and anO point, producing a newX point in the un-
physical region@Fig. 10~d!#. This type of bifurcation occurs

FIG. 9. The two one-island chains, heteroclinic topology, c
IA: w.wM , w0,wm (w050.8, w51.2).
d

also in the Tokamap@1#. During this sequence of bifurca
tions, the upper island aroundY12 ~not shown in Fig. 10!
remains almost unaffected. One therefore ends up, after
passage ofw0 through the ‘‘bifurcation belt,’’ in situation ID
of Table I ~Fig. 11!. A single fixedO point is left in the
physical domain: its former ‘‘companion’’ has disappear
~because it has moved into the unphysical domain.!

e

FIG. 10. Disappearance of fixed points by passage through
bifurcations~extended phase space!. Fixed: w.wM (w51.2). ~a!
First bifurcation:w05wm (w050.987 33). ~b! Case IB:wm,w0

,wB (w051). ~c! Second bifurcation:w05wM (w051.012 67).
~d! Case ID:w0.wM (w051.2).
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Case III (wm,w,wB) is very interesting because it ex
hibits quite a different topology. In this case, the functionF2
has no roots, hence onlyF1 produces fixed points. Whe
w0,wm ~case IIIA!, there is anO point and anX point,
aligned at the same value ofu50.5 @Fig. 12~a!#. This gives
rise to ahomoclinic topology, in which the separatrix starting
from the X point returns to the same point. For increasi
w0 , a bifurcation occurs atw05wm , when theX point
reaches the polar axis and merges with the newly borX
points @Fig. 12~b!#. The bifurcation produces a decay of th
X point Y11 into two X points and a ghostO point ~case IIIB!.
The structure of the islands in the extended phase space@Fig.
12~c!# is particularly interesting. It displays twoO points
aligned onu50.5 encircled by islands, and twoX points on
the polar axis. This type of structure was called a ‘‘dipo
structure’’ by del-Castillo-Negrete and co-workers@18–21#.
Here, however, it appears as a ‘‘ghost dipole,’’ because
of the islands is located in the unphysical region and thX
points are on the polar axis. Hence, in reality~i.e., in the
polar representation!, only the upper island is visible.

We consider next a different type of scan, keepingw0
fixed (w0,wm) and starting atw.wM , case IA, with two
island chains in heteroclinic configuration@Fig. 13~a!#. w is
now lowered, until it reachesw5wM . There isno bifurca-
tion at this point: there are still twoO points and twoX
points; but the upper separatrix touches the lowerX point at
u5 1

2 . This producesa reconnectionof the two separatrices
and areorganization into a homoclinic topology@Fig. 13~b!#.
A remarkable fact is thatthis process, which involves a
overlap of island chains, does not produce chaotization. This
reconnection leading to a change of topology without bif
cation and without chaotization is a characteristic property
nontwist maps, first described by Howard and Hohs@14# and
also by del-Castillo-Negrete and co-workers@19–21#. Upon
further lowering ofw, the size of the island aroundY21 de-
creases until, atw5wB , theO point Y21 and theX point Y22
merge. As a result of this bifurcation, this island disappea
we are in case IIIA@Fig. 13~c!#. Whenw further decreases
the unique remaining island shrinks while moving very lit
downward. Whenw crosses the second bifurcation poi
wm , the O point merges with theX point and the island
disappears ‘‘on the spot’’@Fig. 13~d!#. Below this threshold

FIG. 11. Single one-island chain in the physical domain, c
ID: w.wM , w0.wM (w051.1, w51.2).
e

-
f

s:
there are no fixed points left in the revtokamap~case IVA!.

To sum up these results, we have seen that the revt
map presents a rich variety of bifurcations leading to ve
different phase portraits. Some of them are of the same
ture as in the standard nontwist map, but there are additio
types in the revtokamap, due to the presence of the imp
etrable polar axis.

e

FIG. 12. Dipole formation, homoclinic topology, by passa
through a bifurcation~extended phase space!. Fixed w: wm,w
,wB (w51). ~a! Single one-island chain, homoclinic, case IIIA
w0,wm (w050.8). ~b! Bifurcation: w05wm (w50.987 33). ~c!
Dipole ~‘‘ghost’’ !, case IIIB:wm,w0,wB (w050.99).
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The last point we wish to discuss in this section is t
phenomenon ofcollision of periodic orbits. This phenom-
enon was also first exhibited in Refs.@14# and@18–21# in the
standard nontwist map; its appearance is very similar in
revtokamap. For a clear visualization, we now conside
sequence of phase portraits of the revtokamap forfixed val-
ues of w and w0 . For convenience, we choosew50.67 and
w050.3333 (w150.166 67, as before!. We study the evolu-
tion of the pair of island chains corresponding to windi
numberv5 2

3 for varying K. We start atK51.5: the two
island chains have heteroclinic topology, and are loca
rather close to each other@Fig. 14~a!#. As K increases, the
two island chains move closer together until a critical va
of K is reached: a process of separatrix reconnection hap
at this point, with a transition to homoclinic topology@Fig.
14~b!#. This reconnection is similar to the one of Fig. 13~b!.
Let us stress again that the overlapping of island chains d
not produce chaos. Such nondestructive overlapping is
duced when islands corresponding todifferent branches of

FIG. 13. Separatrix reconnection and disappearance of fi
points in homoclinic topology, by passage through two bifurcatio
Fixed: w0,wm (w050.8). ~a! Above reconnection~case IA!: w
.wM (w51.05). ~b! At reconnection:w5wM (w51.012 67).~c!
Below first bifurcation~case IIIA!: wm,w,wB (w51.005). ~d!
Just above second bifurcation:w*wm (w50.993). ~e! Below sec-
ond bifurcation~case IVA!: w,wm (w50.98).
e
a

d

e
ns

es
o-

the W profileare colliding. The homoclinic topology ensure
the mutual ‘‘insulation’’ of the two island chains: althoug
strongly overlapping in space, they are isolated from e
other by their homoclinic separatrices. AsK is further in-
creased, the islands shrink, and finally disappear after
passage through a second critical value ofK producing a

d
.

FIG. 14. Collision ofv5
2
3 islands by passage through reco

nection and bifurcation upon increasingK. w50.67 and w0

50.3333 ~both fixed!. ~a! Below reconnection (K51.5). ~b! Be-
tween reconnection and bifurcation (K52). ~c! Above bifurcation
(K52.15).
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bifurcation@Fig. 14~c!#: there are no longer anyv5 2
3 islands

left above this value ofK.
An interesting case is illustrated in Fig. 15. We see her

collision of period-4 orbits:the process is exactly the sam
as for the collision of period-3 orbits illustrated in Fig. 1
starting from two neighboring four-island chains with hete
clinic topology and increasingK, a separatrix reconnectio
produces the homoclinic topology shown in Fig. 15, fo
lowed by the disappearance of the islands. The unusual
ture is precisely that there is no difference with the perio
case. In the standard nontwist map@Eq. ~7!# studied in Refs.
@18–21#, there appears an essential difference between
and even-period island chains: the latter collide by produc
real dipole structures as in Fig. 12~c!. This is only possible
when theO points~and also theX points! of the initial neigh-
boring island chains are aligned on the same value ofu. This
is the case in Fig. 12~c! ~although one of the components
the dipole is a ‘‘ghost’’!. In the standard nontwist map, th
even-period island chains indeed have this property~see
Figs. 6 and 7 of Ref.@20#, and Fig. 3 of Ref.@14#!. In the
revtokamap, on the other hand, theO points of neighboring

FIG. 15. Collision ofv5
3
4 islands between reconnection an

bifurcation.K51.8, w50.754, andw050.3333.
ys

.
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islands appear to be shifted inu with respect to each other
both for odd and even periods. The mechanism of reconn
tion is therefore always like in Fig. 14. We found no comb
nation of parameters which would lead to physical dipo
formation.

V. CONCLUSIONS

We have shown that a simple iterative map~revtokamap!
can be constructed, fulfilling the minimum requirements
a representation of a magnetic field in toroidal geometry w
a reversed shear configuration. It is a typical Hamilton
nontwist map. The presence of a nonmonotonous wind
number profile introduces a number of features as compa
to the monotonous tokamap. In particular, there appea
‘‘transport barrier’’ separating a robust, central region from
semiglobally chaotic edge region. This transport barrier
ists even for small values of the stochasticity parameterK.
On the other hand, a variety of bifurcation phenomena
exhibited in the central region, depending on the relat
values of the control parametersK, w, andw0 . These result
from the combination of the properties of general nontw
maps with the specific features of the revtokamap~invariance
of the polar axis!. It would be very interesting to envisage a
experimental test of these unusual bifurcation and reconn
tion phenomena in a real tokamak.

Many more properties of the tokamap and of the revto
map will be studied in forthcoming works. These includ
questions such as the dependence on the parameters of
ous physical properties, similarity and scaling properti
Last but not least, we intend to introduce charged partic
into this magnetic field and study the transport of partic
and heat in a partially chaotic tokamak configuration. T
problem, which is very poorly understood, is of crucial im
portance for fusion physics.
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